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Abstract

The holographic method solves the crystallographic
inverse problem in real space. In addition to the
measured structure-factor amplitudes, it uses other
available information such as the positivity of the
electron density, knowledge of part of the structure as
well as MIR and/or MAD data. In the present paper, the
range of useful information is extended to include
knowledge that is statistical in nature. For example, it is
known that the distribution of the structure-factor
amplitudes of large molecules is described by Wilson
statistics. Bayesian methods are used to optimize the
signal-to-noise ratio of experimental measurements,
to estimate missing re¯ections and to extrapolate
measured data to higher resolution. In a similar vein,
the cost function in the holographic algorithm is
modi®ed to account for the uncertainties of the
measured structure factors. It is also shown how
statistical knowledge about the unsolved part of the
molecule may be utilized.

1. Introduction

In previous publications of the author and his colla-
borators [SzoÈ ke (1993, paper II), Maalouf et al. (1993,
paper III), Somoza et al. (1995, paper IV) and SzoÈ ke et
al. (1997, paper V)], X-ray crystallographic computa-
tions of macromolecules were re-examined starting from
the analogy between X-ray diffraction and holography.
When part of the molecule is known, the waves
diffracted from that part are analogous to the reference
wave in holography. The waves diffracted from the
unknown part of the molecule are analogous to the
object wave in holography. Their interference provides
phase information that helps to decipher the X-ray
diffraction pattern. The results of these considerations
were called the holographic method. Our method
reawakens a long dormant point of view in X-ray
crystallography (Bragg, 1950; Tollin et al., 1966).

Our approach can be alternatively described as a real-
space method, based on a representation of the electron
density in terms of basis functions with some overlap.
The approach has several advantages. One of them is

that various kinds of information about the electron
density of the molecule can be incorporated consistently
and transparently. Another one is that it shows the close
analogy of the solution of the crystal structure to the
reconstruction of an unknown object from a hologram
and to the recovery of a three-dimensional image from a
blurred picture. Both these subjects have an extensive
literature and have been thoroughly analyzed mathe-
matically. The analogy, therefore, gives good guidance
for crystallographic computations.

In our previous papers on the holographic method, we
did not consider the uncertainty in experimental data
nor did we utilize information that can be expressed
only in statistical terms, although statistical considera-
tions have a long history in X-ray crystallography and
have been very successful in improving the quality of the
solutions of crystals. We refer the reader to articles in a
recent book on macromolecular crystallography edited
by Carter & Sweet (1997). This paper is our ®rst direct
contact with these considerations. Some of our deriva-
tions repeat earlier work; our excuse for doing so is that
we put the earlier work into a new context.

In this paper, we start with a brief summary of our
notation in x2. This is followed in x3 by a discussion on
how to obtain the statistical distribution of the estimated
magnitudes of X-ray structure factors from experi-
mental measurements. The speed of modern computers
makes it possible to use sophisticated statistical methods
without simplifying assumptions and thereby get the
best signal-to-noise ratio that the measurement can
provide. The holographic method can then use the
detailed statistics of the structure factors. In x4, we show
how to use the statistics of the measured structure
factors in the holographic method. We show in x5 how to
use prior knowledge of missing data in terms of Wilson
statistics. In x6, we go one step further: we show how to
use statistical knowledge of the missing part of the
molecule in order to lift the phase degeneracy of the cost
function used by the holographic method. In x7, we
make a few remarks on the relation of maximum-
entropy reconstruction to our method and we present
our summary in x8. Only the formulas in x4 of this paper
have been incorporated so far into the computer
program EDEN.



2. Brief summary of the theory

The notation in this paper is the same as in our previous
papers (SzoÈ ke, 1993; SzoÈ ke et al., 1997). The electron
density in the unit cell of a crystal is divided into a
known and an unknown part. The structure factors of
the known part are denoted by R(h). They are given by

R�h� � R
unit cell

�known�r� exp�2�ih � F r� dr; �1�

where we use standard crystallographic notation. The
unknown part of the electron density is described as a
sum of Gaussian basis functions of equal widths,
centered on a grid that divides the unit cell into Pa, Pb,
Pc equal parts along the crystallographic axes a, b, c,
respectively. The grid points are denoted by rp;
p � 1; . . . ;P, where P � PaPbPc. Each Gaussian blob
(voxel) is assumed to contain an unknown number of
electrons, n(p):

�unknown�r� ' ����r2�ÿ3=2 PP
p�1

n�p� exp�ÿjrÿ rpj2=��r2�;

�2�
where �r is the mean grid spacing and � determines the
width of the Gaussians relative to the grid spacing. If the
grid spacing is suf®ciently ®ne, the electron density
of the unknown part of the molecule can be well
approximated by such a superposition of Gaussians.
When (2) is extended periodically over the repetitions of
the unit cell, the structure factors of the unknown part,
O(h), can be expressed as

O�h� � exp�ÿ����rjF Thj�2�PP
p�1

n�p� exp�2�ih � F rp�:

�3�
The notation R(h) for the structure factors of the known
part of the structure and O(h) for those of the unknown
part of the structure is adopted from holographic theory,
where R(h) and O(h) denote the reference and object
wave, respectively. The square of the absolute magni-
tude of the structure factors of the crystal, jF�h�j2, then
satis®es the equation

jF�h�j2 � jR�h� �O�h�j2
� jR�h�j2 � R�h�O��h� � R��h�O�h� � jO�h�j2:

�4�
When the representation of the unknown density is
substituted from (3), (4) becomes a set of quadratic
equations in the unknowns, n(p). The number of equa-
tions, Nh, is usually not equal to the number of
unknowns, P. The equations may contain inconsistent
information, e.g. due to experimental errors, or lack of
isomorphism in MIR, or incomplete non-crystal-
lographic symmetry. The equations are also ill condi-
tioned and therefore their solutions are extremely

sensitive to noise in the data. Under these conditions,
the equations may have many solutions or no solution at
all. Our way of circumventing these problems is to
obtain a `quasi-solution' of (4) by minimizing the
discrepancy or cost function (see e.g. Dainty & Fienup,
1987):

feden � 1
2

P
h

w0�h�2�jR0�h� �O�h�j ÿ jF 0�h�j�2; �5�

where R0(h) and F 0�h� are apodized (smeared) versions
of R(h) and F(h). The need for apodization and the
correct ways to do it were discussed in papers II and V.

The solution of equation (5) is not unique: this is an
expression of the well known phase problem of crys-
tallography. The equivalent mathematical statement is
that an arbitrary element of the null space of the
`holographic encoding operator' can be added to any
vector n(p) that minimizes the cost function (5) (see
paper II). A simple geometric representation of this lack
of uniqueness for acentric re¯ections, in the plane of
complex numbers, is shown in Fig. 1. Since the phase of
jF�h�j is unknown, any O(h) that connects the tip of
R(h) to any point on the circle with radius jF�h�j results
in the same value of the cost function. Thus, the differ-
ence between any two of the vectors O(h) that satis®es
this condition belongs to the null space of the encoding
operator. However, additional information in the form
of constraints reduces the arbitrariness of the solution.

As discussed in our previous papers, non-negativity of
the electron density is always enforced. When part of the

Fig. 1. Geometric representation of equation (4) in the complex plane
for acentric re¯ections. R(h) is the vector representing the structure
factor of the known part of the electron density. The circle around
the origin has the radius jF�h�j. Any vector O(h) that starts at the tip
of R(h) and ends on the circle satis®es equation (4). The unweighted
difference Fourier solution is O2(h). If the `correct' solution is
O1(h), the dual image is represented by O3(h). The Sim-weighted
difference Fourier solution is the midpoint between the tips of O1(h)
and O3(h).
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molecule is known, there is statistical knowledge of the
structure factors of the rest of the molecule (its
unknown part). This knowledge will be used in x6 to lift
the degeneracy of the cost function on the circle jF�h�j in
Fig. 1.

Sometimes there is also partial knowledge of some
parts of the electron density of the molecule. Such
knowledge is used by EDEN in terms of a `target'
density, denoted by n(p)target. The electron density of the
crystal is urged to agree with the target density by
minimizing a real-space cost function, fspace,

fspace � 1
2 �spaceP

PP
p�1

~w�p�2�n�p� ÿ n�p�target�2: �6�

The relative weight, �space, and the weights, ~w�p�2 � 1,
express the `strength of our belief' in the correctness of
the target density: the weights, ~w�p�, may be used to
emphasize or de-emphasize different regions of the
target density (although generally they are set to 1 or 0),
while �space determines the relative importance of fspace

with respect to feden. Several variants of target cost
functions will be the subject of a forthcoming paper.

3. Statistical distribution of the `true' values of structure-
factor amplitudes

The amplitudes of the structure factors, jF�h�j, that
appear in (4) are related to the measured intensities of
the diffracted beam from the crystal. This section will
concentrate on the statistical distribution of the `true'
values of the structure factors when they are estimated
from (necessarily imperfect) experimental measure-
ments. We will discuss one particular aspect of data
reduction by trying to answer the following questions. Is
there an optimal strategy for estimating the `true'
intensity of a Bragg re¯ection? Can we estimate the
distribution of its likelihood, i.e. the probability density
of the `true' value of jF�h�j2? Can we reliably identify
`outliers' or `glitches', i.e. measurements where some-
thing went wrong with the experiment? How do we
`merge' data, i.e. what do we do when the intensities of
two re¯ections that are supposed to be the same turn out
to be different? We will answer these questions using
Bayesian statistics.

We assume that an area detector was used in the
experiment. We will skip over many of the problems
faced by an experimenter: measurements of the
re¯ected X-ray intensities have to be corrected for lack
of uniformity, for possible nonlinearity and for localized
¯aws in the detector. Together with Bragg re¯ections,
the detector also sees a more or less structureless
background that is caused by X-ray scattering from
disorder and thermal motion in the crystal as well as by
the solvent in and around the crystal, by parts of the
apparatus and even by the air path in front of the
detector. Frames of data, which are taken sequentially,

have to be put onto a common scale and possibly
corrected for radiation damage to the crystal. Experi-
mental results also have to be corrected for the
absorption of X-rays in the crystal, for the polarization
of the source and of the re¯ected beam, for possible
extinction and for the rotation speed of the crystal. All
these subjects are well summarized in standard text-
books (see e.g. Giacovazzo, 1992). There are also good
computer programs that deal with these matters. Some
aspects of the above problems are further elaborated on
in Appendix A.

We assume that there are well de®ned regions of the
area detector that are outside the Bragg peaks. These
areas can be used to determine the intensity of the
background. The simplest way to estimate the intensity
of a Bragg re¯ection is by summing the measured
photoelectrons in an area of the photodetector that
encloses the re¯ection in question and by subtracting the
estimated background counts from it. Our approach to
the estimation of the statistical distribution of the true
values of the re¯ected intensities follows closely that of
French & Wilson (1978). Our excuse for repeating some
of their work in x3.1 is to present some new results and
to set the stage for the more sophisticated discussion in
x3.2. In that section, we use the areas of the detector that
are outside the Bragg peaks to estimate the spatial
distribution of the background. In addition, we use an
optimal (invariant three-dimensional) model for the
shape of the Bragg re¯ections from the crystal. Then we
optimally estimate the intensity of a re¯ection as well as
the statistical distribution of this estimate. In x3.3, we
give the likelihood that the measurement had a `glitch'
and discuss how to merge data from re¯ections that are
supposed to have the same intensity. Both the ®rst and
the second methods are used in widely available data-
processing programs. The ®rst one is usually called data
integration with background subtraction, or back-
ground±signal±background method. The second one is
usually called pro®le ®tting. For a recent review, we refer
to Gilmore (1996).

3.1. Data integration with background subtraction

Let us assume that the integrated intensity of a certain
Bragg re¯ection plus its background has been measured
in units of photon counts by summing up the photon
counts in a small area that contains `just' the re¯ection.
Let us denote the result by N. The background intensity
in this area of the re¯ection can be estimated indepen-
dently by adding up the photon counts in another area
that surrounds the ®rst one and scaling it by the ratio of
the two areas. Let us denote the background intensity
thus estimated by hNBi. Naturally, the estimated value of
the background has an error associated with it. In
addition to the experimental data, we will use the a
priori (Wilson) statistics of the structure-factor ampli-
tudes of the molecules in the crystal and the photocount
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distribution of the detector. We want to know the `true'
value of jF�h�j2 in the same units under these circum-
stances. This will be performed, following French &
Wilson (1978), by ®nding the posterior distribution of
the value of the integrated re¯ection intensity.

The `true' value of jF�h�j2 will be denoted by NR. The
(posterior) probability density of NR, given the
measurements N and hNBi, will be denoted by
p�NRjN; hNBi�. (Appendix B summarizes our statistical
de®nitions and notation.) The probability distribution
p�NRjN; hNBi� can be perceived as a conditional prob-
ability or likelihood density that expresses our ignorance
of the true value of the Bragg re¯ection amplitude, given
our knowledge of the measurement of that re¯ection
(plus its background) and also given our best estimate of
the background. It can also be thought of as a formula
that determines the odds for betting on the outcome of a
future experiment that would measure the same re¯ec-
tion intensity to very high accuracy (e.g. by counting for
much longer).

We will now estimate p�NRjN; hNBi� . First we discuss
its `ingredients': the uncertainty in NB, the photocount
distribution of N and the prior statistical knowledge of
NR. Then we use Bayes's law to put it all together.

The likelihood distribution of the true value of the
background, NB, given its estimated value, hNBi, will be
assumed to be Gaussian,

p�NBjhNBi� � �2�S2�ÿ1=2 exp�ÿ�NB ÿ hNBi�2=2S2�;
0 � NB; hNBi: �7�

Equation (7) should be a good approximation when the
uncertainty in the background measurement is small,
S� hNBi. Thus, S is interpreted as the root mean square
error of the estimate, expressing our ignorance of the
true value of NB.

Even though the true values of NR and NB are
determined uniquely by the crystal and the X-ray
apparatus, the actual number of counts measured in any
experiment ¯uctuates statistically. On the most funda-
mental level, this follows from the quantum nature of
X-rays and the limited quantum ef®ciency of the detector
(Goodman, 1985), but imperfections of the measuring
apparatus and even the judgment of the experimenter
contribute to it. Although theories of photocount
distributions are well founded and well tested, it is
highly desirable to determine the actual statistical
distribution of the signal when the detector is exposed
to a constant X-ray intensity for best results (Appendix
A). Such measurements can be made during the routine
calibration of detectors. For illustration, we will use the
highly simpli®ed Poisson photocount distribution,

p�NjNR;NB� � ��NR � NB�N=N!� exp�ÿ�NR � NB��;
0 � N;NR;NB: �8�

Such a distribution would be obtained from a perfectly
monochromatic non¯uctuating source and a noiseless

X-ray detector. More general distributions are also
described by Goodman (1985).

The additional information we will use is the nature of
the crystal itself. We can assume that the dimensions of
the unit cell as well as the chemical composition of the
protein are known. While the chemical composition of
the molecule can determine the absolute scale of the
re¯ections as well as the solvent content of the unit cell,
it is not needed at this stage. At medium to high reso-
lution (greater than 4 AÊ ), the structure factors of
proteins are the Fourier transforms of the scattering
factors of all the protein atoms, while the solvent
contributes very little. Under these conditions, the
amplitudes of the re¯ections have a Wilson distribution,
which we use for our prior knowledge.

The speci®c Wilson distributions for centric and
acentric re¯ections are, from (71c) and (71a) in
Appendix C1:

pc�NR� � �2�hNaveiNR�ÿ1=2 exp�ÿNR=2hNavei�
�centric� �9c�

pa�NR� � hNaveiÿ1 exp�ÿNR=hNavei�
�acentric�; �9a�

where hNavei is the average of the measured re¯ection
intensities within a resolution shell. When the re¯ections
are measured, their scale is unknown. It can be esti-
mated from a simple-minded average and its magnitude
can be corrected iteratively. In Bayesian statistics, these
probabilities are called priors.

In order to estimate p�NRjN; hNBi�, we will use the
combination law of probabilities (67) and Bayes's rule
(68):

p�NRjN; hNBi� �
R1
0

p�NRjN;NB�p�NBjhNBi� dNB; �10�

p�NRjN;NB� � p�NjNR;NB�p�NR;NB�=p�N;NB�:
�11�

As the intensities of the Bragg re¯ection and that of the
background are statistically independent, the joint
probabilities can be simpli®ed:

p�NR;NB� � p�NR�p�NB� �12�
p�N;NB� � p�NjNB�p�NB�: �13�

The conditional probability, p�NjNB�, is calculated in
Appendix C2. Finally, substituting from (12) and (13),
we get

p�NRjN; hNBi�
� p�NR�

R1
0

p�NjNR;NB��p�NBjhNBi�=p�NjNB�� dNB;

�14�
where for centric and acentric re¯ections we should use
pc�NR� and pa�NR�, respectively, from (9c) and (9a) as
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well as pc�NjNB� and pa�NjNB� from (75c) and (75a). For
the simpli®ed assumptions we made above, we can
substitute from (8) for p�NjNR;NB� and from (7) for
p�NBjhNBi�. For the most reliable results, experimental
distributions for p�NjNR;NB� and p�NR� should be used
and (14), as well as (74a) and (74c), integrated
numerically. Note that N, NR, NB and hNBi are restricted
to be non-negative.

When the uncertainty in the background measure-
ment is small compared to N, hNBi and also compared to
jN ÿ hNBij, the integral can be carried out. The result is
the substitution of hNBi for NB everywhere. If, in addi-
tion, the number of photons within the peak is large,
N � 1, the Poisson distribution can be well approxi-
mated by a Gaussian distribution with a peak at N and a
width N1=2. The maximum of the likelihood distribution
for centric re¯ections, pc, is at

NR � N ÿ hNBi ÿ N=2hNavei
� N�1ÿ 1=2hNavei� ÿ hNBi; �15�

while for an acentric re¯ection the maximum of pa is at

NR � N ÿ hNBi ÿ N=hNavei
� N�1ÿ 1=hNavei� ÿ hNBi: �16�

The likelihood distribution of NR is itself a Gaussian of
width N1=2, so the � value of jF�h�j2 (in units of NR) is
N1=2. The terms subtracted, N=2hNavei for centric and
N=hNavei for acentric re¯ections, are corrections for our
prior knowledge of the magnitudes of the re¯ections. It
should be stressed that (15) and (16) are for the high
signal-to-noise case only. Therefore, hNavei � 1 and the
corrections to N are relatively small. In the low signal-
to-noise regime, where quantum ¯uctuations are
important, the full equations (14) have to be used.

3.2. `Pro®le ®tting'

Let us assume that most Bragg re¯ections are well
separated on the area detector. Let us also assume that
the positions of the re¯ections are predicted quite
accurately by data-acquisition programs. Under such
conditions, `®tting the pro®le' of the re¯ections can
improve the statistical uncertainty of the measurements
signi®cantly. This section will borrow ideas from Oatley
& French (1982), as well as from Diamond (1969),
Rossmann (1979), Rossmann et al. (1979), Kabsch
(1988) and Otwinowski (1993).

A simple way to understand the possibility of
improving the signal-to-noise ratio, compared to the
simple integration introduced in the previous section, is
by asking the question: how big an area should we
integrate around a re¯ection in order to obtain the
smallest statistical uncertainty? If we integrate a very
large area, we encompass all the photon counts from the
Bragg re¯ection but we include too many background
counts. As the uncertainty is proportional to N1=2 and

increasing the integrated area hardly increases the
counts from the re¯ection, we clearly increase our
overall uncertainty. If we integrate too small an area, we
lose part of the `good' counts from the re¯ection itself,
increasing the uncertainty of the measurement again.
Thus there is clearly an optimum area to be integrated.
[A computer program that optimizes the area was
published by Bolotovsky et al. (1995).] One should do
even better by a weighted integration of the counts in
different pixels within the optimum area. The weights
should be large where the ratio of the signal to the
background is large and they should be small where the
signal is small compared to the background. This is the
procedure followed in DENZO (Otwinowski, 1993) and
MOSFLM (CCP4, 1994). We should do even better if
we had a good independent estimate of the background.
All these considerations can be included properly in
Bayesian estimation. The formalism in this section is
a straightforward extension of our treatment in the
previous section.

In Appendix A, we discuss the procedure to obtain
estimates for the background intensity and its standard
error as well as for the pro®les of the re¯ection spots and
their error distribution. In this section, we will assume
that those pro®les have been obtained, parametrized
and their correct positions have been predicted by
a suitable indexing program. For ease of presentation,
we will assume two-dimensional Gaussian re¯ection
pro®les, no error in their widths and a two-dimensional
Gaussian distribution of the error in their predicted
position. The formalism is independent of these
assumptions but their use gives relatively simple analytic
results.

We are given the following data: (a) A set of
measured photon counts {N(i)}, where i denotes the two-
dimensional pixel coordinates of the detector in a
generous vicinity of a Bragg re¯ection and where the
braces { . . . } signify that we deal with the whole set of
measurements, fN�i�; i � 1; . . . ; kg. (b) An estimate of
the center position of the re¯ection hioi and the prob-
ability distribution of the error in this estimate. (c). An
estimate of the shape of the re¯ection, f���iÿ io�g,
expressed as an analytic function with some parameters
and the probability distribution of the errors in those
parameters. (d) An estimate of the background fhNB�i�ig
as a function of position and the standard error of that
estimate. (e) The a priori (Wilson) statistics of the
structure-factor amplitudes of the molecules. ( f ) The
photocount distribution of the detector. We want to
know the posterior distribution of the value of the
integrated re¯ection intensity NR under these circum-
stances. The distribution we seek will be denoted by
p�NRjfN�i�g; fhNB�i�ig; hioi; f���iÿ io�g�, where the
symbols will be de®ned more accurately below. As in the
previous section, we will ®rst discuss the separate
ingredients of the distribution, then put them together
using Bayes's rule.
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We denote by hioi our best estimate of the center
position of the re¯ection; let the probability distribution
of its true center, io, be given by

p�iojhioi� � �1=2���i�2� exp�ÿjio ÿ hioij2=2��i�2�; �17�
where �i is the uncertainty in the estimated position of
the re¯ection. Our best estimate of the re¯ection pro®le
was denoted by f���iÿ io�g , where the symbol �
denotes a set of parameters to describe its actual shape.
For de®niteness, we will use a Gaussian shape of width
��. What this means is that we can calculate the `true'
value of the contribution of the Bragg re¯ection at point
i from its `true' integrated value, NR, using

NR�i� � NR���iÿ io�
� NR�1=2�����2� exp�ÿjiÿ ioj2=2����2�: �18�

For simplicity, we will forego the probability distribution
in the value of ��. The last two equations are actually
oversimpli®ed. As discussed in Appendix A, we should
be able to establish a good `invariant' reciprocal-space
pro®le for the crystal. We can then use our knowledge of
the experimental geometry to transform the invariant
pro®le into detector coordinates. Even if the three-
dimensional invariant pro®le is Gaussian, it is not
assured that (18) will describe fNR�i�g correctly or that
the uncertainty in the estimated position of the center of
the re¯ection will be given by (17). The good news is
that, by doing the computations properly, correct
formulas can be obtained and used.

We will make two alternative assumptions about the
uncertainty in the estimation of the background inten-
sity. First, we will assume that it is independent of
position; in that case, (7) will be modi®ed to

p�NB�i�jhNB�i�i�
� �2�S2�ÿ1=2 expfÿ�NB�i� ÿ hNB�i�i�2=2S2g; �19a�

with the conditions 0 � NB�i�; hNB�i�i. An alternative
assumption is that the uncertainty in the background is
proportional to the value of hNB�i�i. This means that the
uncertainty is essentially a scale factor

p�NB�i�jhNB�i�i�
� �2��2hNB�i�i2�ÿ1=2

� expfÿ�NB�i� ÿ hNB�i�i�2=2�2hNB�i�i2g; �19b�
where S � �hNBi and hNBi denotes an average back-
ground value. The photocount distribution of each pixel
is the same and the photon counts are not correlated in
different pixels. Therefore, (8) can also be generalized to

p�N�i�jNR;NB�i��
� f�NR�i� � NB�i��N�i�=N�i�!g expfÿ�NR�i� � NB�i��g;

�20�

with the conditions 0 � N�i�;NR�i�;NB�i�. We have to
use (18) for the actual values of NR�i�, given NR.

We can now extend (20) to calculate the joint prob-
ability of the measurements {N(i)} by using the inde-
pendence of the photocount statistics of different pixels.

p�fN�i�gjNR; fNB�i�g� �
Qk
i�1

p�N�i�jNR�i�;NB�i��

� Qk
i�1

f�NR�i� � NB�i��N�i�=N�i�!g

� expfÿ�NR�i� � NB�i��g; �21�
where again we have to use (18) for the actual values of
NR�i�, given NR.

We can now extend the arguments leading to equa-
tions (11)±(14). Let us start with Bayes's rule (68) and
apply it to (21):

p�NRjfN�i�g; fNB�i�g�
� p�fN�i�gjNR; fNB�i�g�
� p�NR; fNB�i�g�=p�fN�i�g; fNB�i�g�: �22�

As in (12) and (13), we use the statistical independence
of NR and NB�i� and use

p�NR; fNB�i�g� � p�NR�p�fNB�i�g� �23�
p�fN�i�g; fNB�i�g� � p�fN�i�gjfNB�i�g�p�fNB�i�g� �24�

p�NR; fNB�i�g�
p�fN�i�g; fNB�i�g�

� p�NR�
p�fN�i�gjfNB�i�g�

: �25�

Finally, we can put all our formulas together. The
required probability distribution will be interpreted as

p�NRjfN�i�g; fhNB�i�ig; hioi; f���iÿ io�g�
� R p�iojhioi� dio

R1
0

p�fNB�i�gjfhNB�i�ig� dfNB�i�g

� p�NRjfN�i�g; fNB�i�g�; �26�
where the shorthand p�fNB�i�gjfhNB�i�ig� denotes the
product of independent probabilities of the back-
ground distribution, (19a) or (19b), and dfNB�i�g is the
k-dimensional integration over them. Substituting from
(22) and (23), we get the general formula for `pro®le
®tting',

p�NRjfN�i�g; fhNB�i�ig; hioi; f���iÿ io�g�
� R dio

R1
0

dfNB�i�g p�fN�i�gjNR; fNB�i�g�p�NR�

� p�iojhioi�p�fNB�i�gjfhNB�i�ig=p�fN�i�gjfNB�i�g�:
�27�

The factors in the integrand of this complicated formula
were de®ned elsewhere: p�fN�i�gjNR; fNB�i�g� is de®ned
in (21); p�NR� is de®ned in (9c) and (9a) for centric and
acentric re¯ections, respectively; p�iojhioi� is de®ned in
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(17); p�NB�i�jhNB�i�i� is de®ned in (19a) or (19b);
p�fN�i�gjfNB�i�g� is calculated in Appendix C2, equa-
tions (76c) and (76a), and we neglect the estimated error
in the shape of the pro®le everywhere.

We will now explore some consequences of this
formula. Let us ®rst neglect the uncertainty in the
position and the shape of the re¯ection as well as the
uncertainty in the estimate of the background. Let us
also assume that the a priori distribution of the re¯ec-
tion intensities is uniform, i.e. p�NR� is constant, and that
there are many photon counts in each pixel so the
Poisson distribution, (21), can be approximated by a
Gaussian of mean �NR�i� � NB�i�� and of standard
uncertainty �NR�i� � NB�i��1=2. Then,

p�NRjfN�i�g; fhNB�i�ig; hioi; f���iÿ io�g�

' Qk
i�1

f2��NR�i� � NB�i��gÿ1=2

� expf�N�i� ÿ NR�i� ÿ NB�i��2=2�NR�i� � NB�i��g:
�28�

The maximum-likelihood estimate is obtained by mini-
mizing the exponent,

Pk
i�1

�N�i� ÿ NR�i� ÿ NB�i��2=2�NR�i� � NB�i�� � min:

�29�
Substituting from (18) for the re¯ection pro®le and
estimating �NR�i� � NB�i�� in the denominator by N(i),
we get the formulas used in DENZO (Otwinowski,
1993) and MOSFLM (CCP4, 1994). It is clear therefore
that our equations generalize those for the case when
there are errors in the position and the shape of the
re¯ection as well as in the background and when there is
a priori knowledge of Wilson statistics. We can also
calculate the mean square error in our estimate of NR to
be

��NR�2 � 2
P

i

���iÿ io�2=2N�i�
� �ÿ1

: �30�

3.3. Combination of several measurements and check of
their consistency

In the `pro®le ®tting' method of x3.2, the value of NR

is obtained from a large set of measurements,
fN�i�g; hNB�i�i on a single Bragg re¯ection. If the
uncertainty in each measurement, (20), can be
approximated by a Gaussian, we can ask the question
whether the distribution of photon counts in individual
pixels is compatible with our premise of a single
re¯ection with a well estimated shape. The simplest
statistical test to answer this question is the �2 test:

�2 �Pk
i�1

�N�i� ÿ NR�i� ÿ NB�i��2=2�NR�i� � NB�i��; �31�

where we should compare it with tables for kÿ 1
degrees of freedom. If our estimate of the invariant
pro®le of the re¯ection is correct, the values of �2 for
most re¯ections should fall within the limits
�kÿ 1� � �2�kÿ 1��1=2. If most of the values are signi®-
cantly larger, this is a sign that we did not estimate the
pro®le well or that there is some external variability of
the measurement that was not accounted for. In either
case, we should take remedial action. If there are
`glitches' in the measurement of any re¯ection, owing to
a cosmic ray hitting the detector or some stray radiation
re¯ected from a part of the apparatus, this will show up
as a particularly large value of �2 for a very few re¯ec-
tions.

In addition, most re¯ections are measured repeatedly
in equivalent crystallographic positions. In present
practice, their values are combined with appropriate
weights to give an experimental value and variance for
the `unique' re¯ection chosen to represent the group of
equivalent re¯ections. If the differences among the
individual measurements are too large, some of the
re¯ections are not included in the average. We propose
to combine re¯ections using the ideas of Press (1997).
First, as written above, we have an estimate for the
variances of NR and the various measurements of the
equivalent re¯ections should be reasonably within the
required statistical distribution. Second, we may use
Press's method to assign a probability to the `truth' of
the estimate of the variances of the equivalent re¯ec-
tions and combine them that way.

In summary, measured re¯ection data should be
examined on two different levels. First, the counts in
each pixel within an individual re¯ection should be
statistically compatible. Second, re¯ections that are
supposed to be the same (like h andÿh in the absence of
anomalous dispersion) are measured separately and
their values are combined. Knowing the standard errors
in the estimates of each re¯ection allows a statistical
comparison and the use of Press's (1997) technique.

4. EDEN cost function in the presence of experimental
errors

The holographic method is based on the solution of the
set of algebraic equations (4). A mathematically stable
solution is provided by the minimization of the basic
cost function in EDEN, (5). It was implicitly assumed in
the derivation that the values of the structure factors,
jF�h�j, are perfectly known. In view of the previous
section, we should modify the cost function in order to
minimize its expected value. The likelihood distribution
of the `true' structure-factor amplitudes, NR, was given
by (14) for simple integration with background
subtraction, and it was given by the much more
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complicated expression, (27), for the `pro®le-®tting'
case. In order to simplify matters, we will assume
that one or other formula was reduced to the proba-
bility distribution of the structure-factor amplitudes,
p�jF 0�h�j��F 0�h�measj�, where jF 0�h�measj are the `measured'
structure-factor amplitudes as they appear in the ®les of
experimental values and (possibly) apodized by EDEN.
The expected value of the cost function, h fedeni, is
therefore given by

h fedeni � 1
2

P
h

w0�h�2 R �jR0�h� �O�h�j ÿ jF 0�h�j�2

� p�jF 0�h�j��jF 0�h�measj� djF 0�h�j: �32�
This formula applies to an arbitrary statistical distribu-
tion of the measurement. In particular, it is known from
French & Wilson (1978) that for small measured values
the distribution p�jF 0�h�j��jF 0�h�measj� is not Gaussian.

We will now show that if p�jF 0�h�j��jF 0�h�measj� is
approximately Gaussian, equation (32) reduces to the
usual least-squares prescription.² For a Gaussian
distribution of width �, the integration can be carried
out; the result is

h fedeni � 1
2

P
h

w0�h�2f�jR0�h� �O�h�j ÿ jF 0�h�measj�2

� ��h�2g: �33�
Further progress can be made by using the discrepancy
principle (Morozov, 1966). The principle says that the
solution of a crystal structure should not be better than
the quality of the data. It translates to a criterion that
each term in (33) should not be smaller than � ��h�2.
When this criterion is satis®ed, the derivative of each
term in (33) is proportional to �(h), so the use of h fedeni
would have the tendency of optimizing the less well
known structure factors relatively better than the better
known ones. In order to equalize their uncertainties,
each term should be weighted by 1=��h�2. Then the last
term in the curly brackets in (33) becomes a constant
additive term and can be neglected. The result has to be
normalized to make it independent of the values of the
experimental uncertainty, ��h�2.

h fedeni � 1
2 �1=N�

P
h

�w0�h�2=��h�2�

� f�jR0�h� �O�h�j ÿ jF 0�h�measj�2g; �34�
where N is the average weight in the unit cell,

N � �1=Nhkl�
P

h

w0�h�2=��h�2; �35�

and Nhkl is the number of terms in the summation in
(34). The discrepancy principle also determines a stop-
ping criterion for the solver: the average value of

�jR0�h� �O�h�j ÿ jF 0�h�measj�2 should be ��h�2. This
translates to

h fedenimin � 1
2 �1=N�

P
h

w0�h�2: �36�

Equations (34) and (36) are a very satisfactory result.
Inverse �2 weighting has been used in crystallography
for a long time and its most sophisticated justi®cations
have used a maximum log-likelihood criterion (see e.g.
Read, 1986, 1990) or a maximum-entropy argument
(Gilmore, 1996). We have shown that, when the crys-
tallographic reconstruction is cast in the language of
inverse problems, the same criterion results from the
statistical uncertainty of the data (at least under condi-
tions of a Gaussian distribution of the experimental
errors).

It should be noted that in equation (34) the minimum
of the cost function occurs when the calculated structure
factors are equal to the measured ones. The inverse �2

weighting gives relatively more weight to well measured
re¯ections. In usual practice, an inverse �2-weighted
map is calculated by multiplying the measured structure
factors by 1=�2 so the resulting maps are necessarily
distorted. The above criticism does not apply to the use
of 1=�2 weights in crystallographic re®nement. It should
also be noted that our use of 1=�2 weights in MIR or
MAD problems should obviate the separate use of
®gures of merit. The above formulas were incorporated
in EDEN, using w0�h�2 � 1. For the record, the detailed
formulas are listed in Appendix D. As expected, the
inverse �2 weighting improved some electron-density
maps and the use of (36) as a stopping criterion has
reduced the extent to which EDEN `churns' beyond a
reasonable stopping point. Details of our experience will
be presented in a forthcoming paper.

5. Missing data

In the holographic method, we take great care to
distinguish between missing data and data with the value
zero. In all cost functions in reciprocal space, e.g.
equations (5) and (34), (35), only measured re¯ections
appear. (Re¯ections forbidden by symmetry are auto-
matically added by EDEN.) Similarly, the computation
of the gradient (see Appendix A of paper V) involves
only transforms from real space to reciprocal space.
When the electron density that corresponds to a set of
calculated structure factors is needed, we still only use
Fourier transformation from real space to reciprocal
space and never in the opposite direction. The common
thread in all these methods is that re¯ections that are
not measured are free to take any value.

This procedure, although clearly superior to substi-
tuting a zero value for missing re¯ections, can be criti-
cized on two grounds. First, leaving the values of the
unknown re¯ections completely free may cause numer-
ical instability. In particular, if the gridding resolution is

² For a skewed distribution, the minimum of h fedeni contains
additional terms and it does not reduce to the familiar least-squares
formula.
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higher than the measured data resolution, the electron
density can develop spurious high-frequency oscilla-
tions. The traditional way of dealing with such
phenomena is to introduce regularization methods
(Morozov, 1966) or use maximum-entropy reconstruc-
tion (Gilmore, 1996). We deal with similar problems
partly by apodization. Second, more importantly, we do
have statistical information on the missing data that we
have not used yet. This will be discussed below.

If most of the re¯ections within a resolution shell are
measured, and all measured re¯ections are kept,² we can
calculate the average of the squares of the structure-
factor amplitudes in a properly chosen resolution shell,
� � hjF�h�j2i. The a priori distribution of the magni-
tudes of the structure factors within a resolution shell
will be assumed to have the Wilson distribution
(Appendix C1)

pc�jF�h�j� � �2=���1=2 exp�ÿjF�h�j2=2��
�centric�; �37�

pa�jF�h�j� � �2jF�h�j=�� exp�ÿjF�h�j2=��
�acentric�: �38�

These results can be used in EDEN by adding a cost
function that is small when pc�jF�h�j� and pa�jF�h�j� are
large and vice versa. The relative weight �Wilson of this
cost function can be determined a posteriori by the
resulting distribution of jF�h�j: if the distribution is too
narrow, �Wilson has to be lowered and vice versa.

Our gridding resolution is usually higher than the
extent of the measured re¯ections. If the measured
resolution is higher than �3 AÊ , we can safely use the
theoretical value,

� � hjF�h�j2i � exp�ÿB�jF Thj�2=4�P
n

f 2
n ; �39�

for the average magnitude of jF�h�j2; we can use (37)
and (38) for the statistical distribution of the centric and
acentric re¯ections, respectively. The resulting cost
function is expected to be a good regularizer at high
resolution.

6. EDEN cost function for the unknown part of the
unit cell

From Fig. 1, we see that the structure factors arising
from the missing part of the molecule satisfy the
inequality jjF�h�j ÿ jR�h�jj � jO�h�j � jjF�h�j � jR�h�jj
but, in the absence of additional information, any point
on the circle in Fig. 1 is equally probable as the end point
of O(h). Accordingly, the basic cost function of EDEN,

(5), is degenerate on the circle: it has the same value
(zero) at all points. In fact, we usually know the chemical
composition of the missing part of the molecule. That
information determines the statistical distribution of
|O(h)|. Therefore, not all points on the circle in Fig. 1
should be equally probable. In this section, we work out
the mathematics.

At reasonably high resolution, the solvent region does
not contribute to the structure factors signi®cantly; thus
it will be ignored in the ®rst approximation. The number
of atoms in the unknown part and their atomic number
are known. Under the usual statistical assumptions (see
also Appendix C1), we get the Wilson distribution for
the magnitudes of the structure factors of the unknown
part, jO�h�j:
pc�jO�h�j� � �2=���1=2 exp�ÿjO�h�j2=2��

�centric�; �40�
pa�jO�h�j� � �2jO�h�j=�� exp�ÿjO�h�j2=��

�acentric�; �41�
where � is the sum of the squared scattering factors, f 2

n ,
of the missing atoms only, taking into account their
average thermal motion

� � exp�ÿB�jF Thj�2=4�P
n

f 2
n : �42�

Alternatively, we can assume that the missing part of the
structure is similar to the known part, and scale the
measured structure factors by the ratio of the number of
known to the number of unknown electrons of the
molecule. The above considerations are very similar to
those presented by Bricogne (1984) and Read (1986).

6.1. No `solvent mask'

The calculations in this section will be similar to those
in x3. We want to calculate the (posterior) probability
distribution p�jO�h�j��jR�h�j; jF�h�measj�. In order to
simplify the notation, we will omit the index in reci-
procal space and write p�jOj��jRj; jFmeasj�. Taking into
account the experimental uncertainties in the `true'
value of jFj, as discussed at length in x3, we get from the
composition law of probabilities, (67),

p�jOj��jRj; jFmeasj� �
R

p�jOj��jRj; jFj�p�jFj��jFmeasj� djFj:
�43�

Using Bayes's law, a calculation similar to (11) gives

p�jOj��jFj; jRj� � p�jFj��jRj; jOj�p�jRj; jOj�=p�jFj; jRj�;
�44�

where the magnitude of jOj on the left-hand side is
bounded by ��jFj ÿ jRj�� � jOj � jFj � jRj: �45�

² In x3, we outlined an optimal method for deducing the `true'
amplitudes of the re¯ections. We strongly disagree with the practice of
disregarding measured re¯ections only because their amplitudes are
small.
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As jRj and jOj refer to different parts of the molecule,
their magnitudes are statistically independent. There-
fore,

p�jRj; jOj� � p�jRj�p�jOj�: �46�
The magnitudes of jFj and jRj are not statistically
independent. For brevity, we will present below the
calculations for acentric re¯ections. (In Appendix C3,
centric re¯ections are treated as well.) We know that
F � R�O, where all three denote complex quantities.
We introduce, as auxiliary variables, the magnitude of
jOj and the relative phase between R and O, which we
will denote by '. Then,

pa�jFj;R� � pa�jFj
��R�pa�R�

� pa�jRj�
R

pa�jFj
��R; jOj; '�

� pa�jOj; '� djOj d': �47�
The assumptions that lead to (47) are that the phases
of R are uniformly distributed and that the relative
phase between R and O, denoted by ', is independent of
the absolute phase of R. We will make now the more
restrictive assumption that the magnitude and the
phase of O are statistically independent, pa�jOj; '� �
pa�jOj�pa�'�.

A similar substitution into the numerator of (44) gives

pa�jFj
��R; jOj�p�jOj�

� R pa�jFj
��R; jOj; '�pa�jOj�pa�'� d': �48�

Finally, substituting (47) and (48) into (44), we get

pa�jOj
��jFj;R�

�
R

pa�jFj
��R; jOj; '�pa�jOj�pa�'� d'RR

pa�jFj
��R; jOj; '�pa�jOj�pa�'� djOj d'

: �49�

Equation (49) contains very similar expressions in the
numerator and the denominator. The calculations are
carried out in detail in Appendix C3 both for acentric
and for centric re¯ections. The results for acentric
re¯ections are

pa�jOj
��jFj;R� � jOj exp�ÿjOj2=��

� ÿjFjf�jFj2 ÿ �jRj ÿ jOj�2�
� ��jRj � jOj�2 ÿ jFj2�g1=2

�ÿ1

� fexp�ÿ�jFj2 � jRj2�=��
� I0�2jFjjRj=��gÿ1

�acentric�; �50a�
where I0 is the modi®ed Bessel function of the ®rst kind,
zero order (Abramowitz & Stegun, 1972). The result
agrees with Goodman (1985, equations 2.9±20).

The results for centric re¯ections are

pc�jOj
��jFj;R� � f��jOj ÿ jjRj ÿ jFjj�

� exp�ÿ�jRj ÿ jFj�2=2��g
� fexp�ÿ�jRj ÿ jFj�2=2��
� exp�ÿ�jRj � jFj�2=2��gÿ1

� f��jOj ÿ jjRj � jFjj�
� exp�ÿ�jRj � jFj�2=2��g
� fexp�ÿ�jRj ÿ jFj�2=2��
� exp�ÿ�jRj � jFj�2=2��gÿ1

�centric�: �50c�

The reader is reminded that in both formulas (50a) and
(50c) the limits on jOj satisfy (45). Finally, (50a) or (50c)
have to be substituted into (43). The integrals have to be
evaluated numerically.

These results can be used in EDEN by adding a cost
function in reciprocal space that is small when
p�jOj��jRj; jFmeasj� is large and vice versa. The relative
weight �missing of this cost function can be determined a
posteriori by the resulting distribution of the amplitudes
of the structure factors of the unknown part, jOj: if the
distribution is too narrow, �missing has to be lowered and
vice versa.

6.2. Spatial knowledge about the unknown part of the
molecule

Sometimes there is knowledge about the approximate
location of the missing part of the molecule. This can
happen if there is a known solvent region or there are
parts of the molecule that have been satisfactorily solved
and then we know that the missing part is somewhere
else. There are two consequences of such knowledge.
First, the prior distribution of the density of the
unknown part is not uniform. This manifests itself in a
prior probability distribution that is different from those
in (40) and (41). Second, knowledge of the whereabouts
of the missing part can be incorporated directly into
EDEN by a spatial target function.

The in¯uence of spatial nonuniformity of the mole-
cule on the statistics of its structure factors was derived
by Bricogne (1984) and summarized on p. 382 of his
article in Carter & Sweet (1997). The simplest prior
distribution of the unknown part of the structure is a
uniform one in the allowed region. For our purposes, we
can then use a Gaussian approximation to the structure-
factor amplitudes, whose ®rst and second moments are
given explicitly by Bricogne's formulas. The resulting
distribution can be substituted into equation (48).
Knowledge of the assumed location of the unknown part
of the molecule should be used in one more way: the
calculated structure factors of the unknown part O0�h�
are to be calculated only from the part of the molecule
that is in the unknown region. We will elaborate on this
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topic in a forthcoming paper that deals primarily with
spatial target functions.

7. Maximum-entropy reconstruction

The essence of the holographic method is that it obtains
an electron-density map that simultaneously agrees with
all available knowledge both in real and in reciprocal
space. However, there is often a range of maps that meet
the available information. It is probably best to choose
the simplest (smoothest) map among them. Selecting
this map should stabilize the solution and should mini-
mize any bias in the map by removing features that are
not needed to explain the available data. From the point
of view of information theory, this selection should be
equivalent to selecting the map with the maximum
entropy that satis®es the supplied constraints (Papoulis,
1991; Gilmore, 1996). An important `side effect' of
entropy maximization is the positivity of the resultant
electron density.²

We de®ne a cost function that encourages smoothness
by maximizing the entropy of the electron-density map.
The entropy of a given distribution of electrons, {n(p)}, is

S � ÿPP
p�1

n�p� ln�n�p��: �51�

It should be maximized subject to the magnitudes of the
calculated structure factors being equal to the measured
ones, as expressed e.g. in equation (4). Explicitly, the
constraints are

jF�h�j �
���exp�ÿ����rjF Thj�2�PP

p�1

n�p� exp�2�ih � F rp�
���;
�52�

where all symbols have been de®ned in x2. In EDEN, we
use cost functions that are minimized, therefore we
de®ne the maximum-entropy cost function, fmaxent, to be
proportional to ÿS. The usual way to ®nd such a
constrained minimum is by adding to (51) the differ-
ences between the two sides of the (equality)
constraints, (52), multiplied by Lagrange multipliers,
��h�, that are themselves unknown:

fmaxent � C
PP
p�1

n�p� ln�n�p��

� ��h�
n���exp�ÿ����rjF Thj�2�

�PP
p�1

n�p� exp�2�h � F rp�
���ÿ jF�h�jo; �53�

where C is an appropriate constant. Then the uncon-
strained minimum of fmaxent and the values of the
Lagrange multipliers, ��h�, are found so that the

constraint equations are satis®ed. This results in a set of
electrons per voxel, {nmaxent(p)}, that corresponds to the
maximum-entropy density, qME(r), in equation (ME1) of
Bricogne (1984), or equation (6) of Prince (1993), or
equation (3.10) on p. 384 of Carter & Sweet (1997).

Let us suppose that we are able to solve the
maximum-entropy equations.³ A fundamental result of
constrained optimization theory is that the values of the
Lagrange multipliers exactly compensate for the
gradient of the entropy function at the point of the
constrained minimum of fmaxent. [For exact conditions
see e.g. Luenberger (1984).] For small deviations from
the maximum, we can therefore approximate the
entropy term, (51), using only the second-order term in
the expansion of the logarithm around {nmaxent(p)},

fmaxent ' 1
2 C

PP
p�1

�n�p� ÿ nmaxent�p��2=nmaxent�p�

�entropy term�: �54�
We see that, apart from numerical factors and the
denominator nmaxent(p), this cost function is very similar
to the one in equation (6). The second-order expansion
of the structure-factor part of equation (52) gives terms
that are similar to the `basic' cost function (5).
Displaying those terms gives formulas similar to those of
Collins (1982). We can obviously extend (54) to satisfy
more constraints by de®ning a cost function that is even
more similar to equation (6),

fmaxent � 1
2 �maxent P

PP
p�1

~w�p�2�n�p� ÿ nmaxent�p��2; �55�

where the weights should default to ~w�p�2 �
hni=nmaxent�p�, where hni � N=P, the average number of
electrons per voxel. If there are no external constraints,
nmaxent�p� � hni. We then get

fmaxent � 1
2 �maxent P

PP
p�1

~w�p�2�n�p� ÿ hni�2: �56�

It is clear that, by assigning different weights for
different parts of the unit cell, we can selectively maxi-
mize the entropy of some unknown region while
ignoring other regions whose electron densities are
presumably known.

8. Discussion and conclusions

In this paper, we have shown some ways to incorporate
statistical knowledge into the holographic method. We
started in x3 with a rather lengthy discussion of the

² In the holographic method non-negative electron densities are
always assured. Therefore this side effect is not important.

³ It is not obvious that solving those equations is inherently easier
than solving the crystal structure. In fact, when the structure is solvable
by direct methods, the maximum-entropy density is the solution of the
crystal structure. The advantage of the maximum-entropy equations is
that, given the set of constraints, they always have a unique and stable
solution.
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statistical distribution of the estimated structure factors.
Measurements of integrated intensities of Bragg re¯ec-
tions have inherent errors that lead to uncertainties of
the estimates of their true values. The goal of our deri-
vation was to reduce the errors as much as possible by
introducing additional information. First, the structure
factors are known a priori to satisfy Wilson statistics.
Second, the position as well as the shape of the Bragg
re¯ections can be predicted within some accuracy. Third,
the X-ray background intensity can also be estimated
fairly accurately. The pivotal point of our derivation is
that, if the maximum amount of statistical information
(and no more) is incorporated into Bayes's law, the
distribution of the estimated structure-factor amplitudes
is correctly described by their posterior probability
distribution. As such, it is trivially optimal. In particular,
`pro®le-®tted' intensities should always give better
estimates of the `true' intensities and smaller error bars
than `data integration with background subtraction'.
Our discussion was based on the work of Oatley &
French (1982), but went beyond it. We tried to give a
comprehensive enough discussion that current data-
processing programs could bene®t from it.

Our computer program, EDEN, is able to use (in
principle) the full statistical distribution of the estimated
amplitudes of the structure factors. The most straight-
forward use of this distribution is to demand that the
program minimize the expected value of the squared
differences of the calculated and the `true' structure-
factor amplitudes. For a Gaussian distribution of errors,
this led us to a 1=�2 weighting scheme for the reciprocal-
space cost function (34) and to a stopping criterion, (36),
that prevents over®tting. These are familiar and thus
very satisfactory results. Several remarks are in order.
First, the 1=�2 weighting scheme is usually derived by
maximizing the log-likelihood estimate and not by
minimizing the expected value of the cost function.
Second, minimizing the expectation value of the cost
function and the subsequent weighting scheme is an
equally valid procedure for a more complicated prob-
ability distribution, e.g. equation (27) or (29). Third, our
derivation is valid for a general `omit map'. In usual
practice, analogous weights (Sim weights) are used to
multiply the magnitudes of the measured structure
factors (see paper V). Therefore, the calculated struc-
ture factors cannot agree with the `true' ones even in the
best case, while in our procedure they do. Therefore, the
maps of EDEN are intrinsically more accurate. In
computer programs for crystallographic re®nement,
weights are used correctly. Our formula (34) is similar to
that used in `least-squares' re®nement and maximum-
likelihood re®nement is similar to our formulas in x6.
Fourth, the use of the stopping criterion should prevent
over®tting the map just as cross validation or free R
factor (BruÈ nger, 1992) does. Fifth, using the 1=�2

weighting scheme for the native and each derivative in
MIR and for each wavelength in MAD automatically

gives the correct distribution of phase errors in MIR and
MAD maps. Therefore, it is equivalent to ®gures of
merit and to more elaborate descriptions of phase
errors. (Note that the latter are consequences of exactly
the same weighting scheme for the individual re¯ection
amplitudes.)

In x5, we dealt with two categories of missing data.
The a priori knowledge that was brought to bear on this
problem was just the Wilson distribution, but the
formulas are equally valid for more elaborate distribu-
tions. In x6, we went one step further: we used the
statistical distribution of the structure factors of the
unknown part of the molecule to derive the probability
distribution of the relative phases of the known and the
unknown part, given the measured structure factors for
the whole molecule. Our results are essentially equiva-
lent to those of Bricogne (1984) and Read (1986). The
consequence of this statistical knowledge is that the cost
function, (5) or (34), ceases to be degenerate on the
circle of Fig. 1. One additional step, brie¯y discussed in
x6.2, is that we can easily restrict the spatial extent of the
unknown part of the structure. This can be important
e.g. for molecular replacement.

Our ®nal comments are about the relation of the
holographic method to maximum-entropy methods used
for recovering the electron-density distribution in crys-
tals. Naturally, the most important information for
solving the crystal structure comes from available data:
diffraction amplitudes, MIR, MAD, NCS, the location
and density of known parts of the molecule and of
solvent regions. The alert reader might have noticed
that, in addition, some of the `side effects' of the
maximum-entropy method were already incorporated
into the holographic method. More speci®cally, we
always ensure the positivity of the electron density. We
are also able to use available statistical information to
®ll in missing data and we are able to use the statistical
distribution of structure-factor amplitudes as well as the
presumed location of the missing electron density.
Usually, the resultant electron density is still not
completely determined; in fact, there is often a large
range of uncertainty. The maximum-entropy map
introduces the least amount of unwarranted information
(bias).

We repeat our apologia from paper V. On the
theoretical side, we scrupulously distinguish between
lack of information and tacitly assumed information.
We try to abide by the dictum of LaÂnczos: use all
available information and no more. In principle, given
a suf®cient amount of information, it is possible to
recover the crystal perfectly. However, different
algorithms may have very different convergence
properties and may have very different sensitivity to
imperfections in the data. In our opinion, this last
point alone is suf®ciently important to justify the
development of new methods for crystallographic
computations.
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APPENDIX A

In this Appendix, we discuss some considerations on the
processing of experimental data. It is self evident that
the solution of a crystal structure can only be as good as
the data. In other words, experiments have to be
performed well and data processed carefully for best
results.

We will concentrate on data taken with area detectors,
be they image plates, charge-coupled-device arrays
(CCD) or silicon diode arrays. We assume that the
following preliminary measurements have already been
carried out. First, the detector was illuminated by a
uniform X-ray ¯ux for several well measured time
intervals. This procedure established the relative sensi-
tivity of each image element (pixel), its linearity and
saturation. In particular, `dead' pixels were noted. In
addition, we assume that the actual counting statistics of
the detector were established as a function of the total
number of detected photons. Probably, it is good enough
to assume that all `live' pixels have the same photocount
statistics so this can be extracted from the previous
measurement with uniform illumination. If the validity
of this assumption is in doubt, the detector can be illu-
minated by the same total ¯ux many times and the
statistics of each pixel measured separately. Next, we
assume that the geometrical distortion of the detector
and its spatial resolution have been established by illu-
minating it through a well de®ned array of small
pinholes. In brief, we will assume that we can correct all
distortions of the detector and obtain valid photocounts
at the correct locations. If the detector is stable, such
calibrations need to be performed infrequently.

We now discuss the expected shapes of the Bragg
re¯ections in biological macromolecules. We follow the
notation of Jagodzinski & Frey (1992) and of Willis
(1992). James (1982) and Cowley (1981) present essen-
tially the same formulas in different notation. We
restrict ourselves to the kinematic theory of X-ray
diffraction, i.e. to the ®rst Born approximation. This is
the usual approximation used in macromolecular crys-
tallography. It should be augmented by absorption
corrections and corrected for primary and secondary
extinction for the strongest re¯ections. We de®ne an
invariant re¯ection pro®le to be the intensity distribu-
tion of the Bragg spots re¯ected from a crystal described
as a function of the (continuous) reciprocal-lattice
vector, H. As we have not found a clear and unequivocal
de®nition of this term in the literature (see e.g. Kabsch,
1988), we attempt to de®ne it in a way that is indepen-
dent of the experimental arrangement and that will be
useful for our purposes.

We start with the general expression for X-ray scat-
tering of a crystal in the ®rst Born approximation. Both
the source of the incident X-ray beam and the detector
are assumed to be at a very large distance compared
with the crystal size. The cross section for the scattered

X-ray intensity per unit solid angle per unit frequency
interval (the so-called doubly differential cross section)
for the whole crystal is given by Jagodzinski & Frey
(1992), from the general expression of linear response
theory

d2�coh=d
 d�h�� � �jkj=jkoj�r2
cScoh�H; ��; �57�

where ko and k are the incident and scattered wave
vectors of the X-ray beam. The magnitudes of the wave
vectors are jkoj ' jkj ' 2�=� and H � �kÿ ko�=2� is
the momentum transfer vector. The space±time Fourier
transform of the van Hove autocorrelation function,
Scoh�H; n��, is de®ned below. (We write capital H in
order to emphasize that it is a continuous variable, as
opposed to h, which will be restricted to integer values
of the reciprocal lattice.) The scattering length for
electrons is their classical radius

rc � e2=mc2: �58�
In notation familiar to crystallographers, Scoh�H; n��
is the Fourier transform of the generalized (space-
and time-dependent) electron-density autocorrelation
function, or Patterson function.

Scoh�H; n�� � �1=2�� R
r

R
t

P�r; t� expf2�i�H � rÿ �t�g dr dt;

�59�
where

P�r; t� � 1=jtoj
R
r0

R0
t0�ÿto

��r0; t0���r0 � r; t0 � t� dr0 dt0;

�60�
and ��r0; t0� is the time-dependent electron density in the
crystal in units of electrons per unit volume. The limits
of integration over t0 ensure that the crystal was actually
illuminated by the X-ray beam (which was turned on at
ÿto) and that causality is obeyed. The r0 integration is
over the illuminated (and observed) volume of the
crystal; in fact both r0 and r0 � r have to be illuminated.
The electron densities (multiplied by rc) are closely
related to the atomic scattering factors, f ; in fact, the
usual X-ray structure factors are de®ned as Fourier
transforms of either of them.

Usually, the length of the X-ray exposure is much
longer than the correlation time of internal motions in
the crystal. In such cases, we can de®ne a time-averaged
density autocorrelation function as the limit for large T
of the expression

hP�r; t�i � 1=T
R
r0

R0
t0�ÿT

��r0; t0���r0 � r; t0 � t� dr0 dt0:

�61�
The resulting formula is
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Scoh�H; �� � 1=2�
R
r

R
t

hP�r; t�i expf2�i�H � rÿ �t�g dr dt;

�62�
where the r integration is again over the illuminated
(and observed) volume of the crystal.

The frequency width (spectral width) of the scattered
X-rays is comparable to the inverse of the time scales of
the internal motions of the atoms in the crystal. X-ray
detectors used in crystallography cannot resolve the
spectrum but they measure the integrated intensity.
Accordingly, we de®ne a frequency integrated cross
section

d2�coh=d
 � �jkj=jkoj�r2
c

R
Scoh�H; �� d�: �63�

The frequency integration can be carried out in equation
(59) or (62), givingR

Scoh�H; n�� d� � 1=2�
R
r

hP�r; 0�i expf2�iH � rg dr:

�64�
For completeness, we repeat the de®nition of hP�r; 0�i

hP�r; 0�i � 1=T
R
r0

R0
t0�ÿT

��r0; t0���r0 � r; t0� dr0 dt0: �65�

Thus, it can be seen that the directional distribution of
the frequency-integrated X-ray scattering intensity is
related to the space±time average of the instantaneous
autocorrelation function of the electron density over the
whole crystal.

The ®rst general conclusion that can be drawn from
this formula is that the shape of the X-ray scattering
pattern, including Bragg peaks and background,
depends only on the momentum-transfer vector H. This
conclusion assumes that the illuminated volume of the
crystal does not depend on the crystal orientation and
that the kinematic approximation is valid.

The electron density of crystals has a repetitive
pattern over some distance but real crystals have various
degrees of imperfection. The exact shapes of the
diffraction spots (in reciprocal space) depend on the
exact nature of the disorder in the crystal. From equa-
tions (63), (64) and (65), we see that only the time-
averaged part of the crystal density contributes to the
Bragg spots.

In order to make some progress, we now discuss some
simple models of imperfect crystals. The re¯ections from
a small but perfect crystal of N1 � N2 � N3 unit cells has
a width of 1=N1 � 1=N2 � 1=N3 along the reciprocal-
lattice vectors. This width is independent of the indices
h, k, l of the centers of the re¯ections. From equation
(65), we see that this statement is approximately true
even when the crystalline order has a correlation func-
tion that is not a `box function' as above. For example, if
the imperfect crystal is a collection of incoherently
scattering crystallites, all having exactly the same
direction and lattice spacing, the shapes of the re¯ec-

tions are given by the convolution of the Fourier
transform of the autocorrelation function of the statis-
tical ensemble of the crystallites with the reciprocal-
lattice of each crystal. Therefore, the shape of the
re¯ections for such a collection of incoherently scat-
tering crystallites can be described by a broadening of
the integral points of the reciprocal lattice by
� 1=N1 � 1=N2 � 1=N3 for the average crystallite along
the reciprocal-lattice vectors. Now we can generalize to
a collection of slightly misoriented crystallites (the so-
called mosaic crystal.) We can describe the statistics of
misorientation by some probability distribution as a
function of Euler angles by which the crystallites are
rotated. For small rotations, such misorientation can be
described as small rotations around three orthogonal
axes. As the reciprocal lattice of each crystal is rigidly
tied to its real lattice, the mosaic crystal can be described
as an ensemble of slightly rotated reciprocal lattices
whose points are broadened by the correlation function,
as described above. The resulting qualitative picture is a
reciprocal lattice at the `mean' crystal position, whose
points are broadened by a convolution of two terms: a
constant term and another one that has a pancake shape
along a spherical shell with a given angular distribution,
therefore with a width in reciprocal space that is
proportional to the magnitude of the reciprocal-lattice
vector. Such a broadening will eventually make the
re¯ections overlap at high resolution. In addition, the
incident X-ray beam can be described by its angular
distribution and by its spectral distribution. These can
also be translated into a three-dimensional distribution
of the incident ko. Yet another source of broadening is
the ®nite resolution of the detector. A discussion along
these lines was given by Roth (1986), who gave explicit
formulae for Gaussian distributions in all the above
variables. A recent more detailed calculation along
similar lines was presented by Bolotovsky & Coppens
(1997).

In usual practice, the shapes of the diffraction peaks,
as they appear on the detector, are deduced empirically
from the observed shapes of a number of strong
re¯ections. Most programs assume that the shapes of the
diffraction spots vary slowly as a function of their
position on the detector and as a function of crystal
rotation. They `learn' the actual shapes of the strong
re¯ections in some areas (neighborhoods) of the
detector and then use interpolation to determine the
expected shapes of other re¯ections. We propose, along
the lines of Roth (1986), that an `invariant' three-
dimensional pro®le of the re¯ections in reciprocal space
be established, characterized by a small number of
parameters and used for all the re¯ections. We suggest
the following procedure. First, the parameters of the
incident beam have to be established, i.e. one should
measure its angular distribution and its spectral distri-
bution. This can be performed as part of the calibration
of the X-ray source. Second, one should record a few
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frames of diffraction patterns of the molecule being
studied, using the intended method, e.g. small-angle
oscillation. After indexing the diffraction pattern, one
should take a few static diffraction images with very
small rotations between the pictures. The pro®les of
selected strong re¯ections can be learned by back-
transforming their shapes into reciprocal-space coordi-
nates. This can help to parametrize the `invariant' shapes
of the re¯ections in reciprocal space. The strong re¯ec-
tions whose shapes are taken should sample the reci-
procal space relatively uniformly. After this procedure,
one should go ahead and take all the diffraction images
of the crystal and re®ne the parameters of the shapes of
the diffraction spots. From these patterns, one should try
to ®nd the shapes' slowly varying component ± in other
words, how many parameters are needed to describe the
whole pattern.

We add a few words on diffuse scattering. From the
data-processing point of view, diffuse scattering has a
component that is centered on the incident beam (the
short-range-order part) and a component around each
diffraction spot. Thermal motions of atoms attenuate
the integrated intensity of the Bragg spots by the factor
exp�ÿBjF Thj2=4�. The missing intensity is transferred
to the vicinity of the Bragg re¯ection as diffuse scat-
tering (Willis, 1992). The intensity distributions of the
above diffuse intensity peaks around the Bragg spots
(for an ideal crystal) are proportional to 1=jqj2, where
q � Hÿ h is the displacement from the exact Bragg
condition in reciprocal space. In real crystals, the
distribution of crystal orientations smears out this
distribution of the diffuse spots. It is important to notice
that the integrated diffuse intensity is proportional to
the Bragg intensity itself and its magnitude increases
with resolution. Therefore, if a well de®ned (and reso-
lution-independent) fraction of the diffuse scattering is
mistakenly identi®ed as belonging to the Bragg peak,
the net result of this error is that the thermal motion of
all atoms is mistakenly reduced by the same factor but
the relative magnitude of the thermal motion (B value)
for each individual atom is not changed. Therefore, it is
not too critical to put all the thermal scattering into the
background as long as we cut a constant fraction of it.

We propose the following procedure to ®nd the
background as a function of diffraction angle and to
establish the shapes of the re¯ections in reciprocal
space. Let us de®ne the coordinates of the detector as
pixel space. This is the space in which data were
recorded. After the required geometrical corrections,
the exact position and (lack of) ¯atness of the detector
have been established, we are able to transform from
pixel coordinates to angle coordinates at the crystal. All
data-processing programs perform this transformation
one way or another.

A single exposure of the diffraction pattern yields a
set of `photocounts', Io(x), on the detector as a function
of pixel coordinates, x. This set of counts has ®rst to be

corrected for the sensitivity of each pixel as established
by the calibration procedure, yielding a corrected image,
Ic(x). Next, the corrected image has to be `®lled in' for
missing data. By missing data, we mean dead pixels and
the image of the beam stop. Dead pixels are ¯agged
during calibration and the image of the beam stop can
be established by looking for a large region of very low
counts surrounded by high counts. These regions should
also be ¯agged for future use and they should be ®lled in
using a low-order spline interpolation in two dimensions.
Also, the detector frame should be surrounded by a
larger frame (of appropriate magnitude) and ®lled in so
that the boundaries of the outer frame satisfy periodic
boundary conditions with continuous derivatives. We
denote the ®lled-in (augmented) picture by Ia(x). The
image of the beam stop, the dead pixels and the coor-
dinates of the larger frame change very little from
exposure to exposure; therefore they can be learned and
used later (with slight corrections if needed). We will call
them by the generic name dead pixels.

As we intend to Fourier transform Ia(x), the `®lling in'
was performed in order to eliminate spurious oscilla-
tions and aliasing in the Fourier transform due to sudden
jumps in the data and due to nonperiodic boundaries. As
discussed above, the 1=jqj2 dependence of thermal
diffuse scattering gives relatively high frequency
components, which may present a problem how to
decompose Ia(�) correctly, but this problem is mitigated
in real crystals with sizable mosaic spread.

Now we are ready to ®nd an `optimum' background.
Our basic premise is that the two-dimensional
`augmented' count distribution Ia(x) is a sum of a rela-
tively smooth background and of prominent peaks. Let
us ®rst Fourier transform Ia(x) in two dimensions, giving
Ia��� � DFT�Ia�x��. The expected shape of the magni-

Fig. 2. hjIa���ji is the Fourier transform of the X-ray diffraction image,
in pixel coordinates, averaged within resolution shells, plotted vs the
resolution j�j. Its decomposition into contributions from Bragg
peaks and background is discussed in Appendix A.
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tude of Ia(�) is shown in a schematic way in Fig. 2, where
we plot hjIa���ji averaged over a resolution shell vs j�j.
We will now disentangle the spectrum into its two
components, Ia��� � Ip��� � Ib���, where Ip(�) and Ib(�)
are the Fourier transforms of the peaks and the back-
ground, respectively, as indicated in Fig. 2. This is a
nonlinear problem because Ia(�), Ip(�) and Ib(�) are
complex. The decomposition can be solved iteratively.
We divide hjIa���ji into two fractions as outlined in Fig. 2
by the broken line. We now divide each jIa���j itself into
the same two fractions as hjIa���ji was divided into, in
order to get jIp���j and jIb���j and we set the phases of
Ip(�) and Ib(�) to be those of Ia(�). Let us call these
components I

�1�
p ��� and I

�1�
b ���, respectively. Back trans-

forming them into pixel space gives I�1�p �x� and I
�1�
b �x�

(both real quantities). Let us subtract the background
from the peaks, I

�1�
net�x� � I

�1�
p �x� ÿ I

�1�
b �x�. If there were

no phase error in our procedure and no noise in the
measurement, the peaks would appear essentially with
no background. Because of both errors, the space
between the peaks is noisy. Next we use `soft thresh-
olding', i.e. we set all the values of I

�1�
net �x� < Ithresh to

zero and leave all values of I
�1�
net �x� � Ithresh unchanged.

Let us call the result I
�2�
p �x� and its Fourier transform

I
�2�
p ���. We can form the second approximation of the

background by forming the complex difference
I
�2�
b ��� � Ia��� ÿ I

�2�
p ���. As this contains all the high-

frequency noise of the background counts, it should be
low-pass ®ltered by multiplying it with an appropriate
®lter, Lp(�). The accuracy of the ®lled-in (augmented)
image can be improved by replacing the dead pixel
values by I

�2�
b �x�. Finally, at this point we can iterate in an

obvious way. We expect that the result will converge in
very few iterations.

For purposes of data compression, the differences
D�x� � Ic�x� ÿ Ib�x� can be used, together with Ib(�).
There are relatively few components in the Fourier-
space part and we expect that jD�x�j � Ic�x� for the live
pixels. Note that by our manipulations so far we have
not lost any data. One can also re®ne the procedure by
®nding the beam-stop pixel coordinates as those with
large negative values of D(x) then setting the values of
all the `dead' pixels to be Ib(x) and iterating.

It should be stressed that this procedure provides a
background that is not constrained by preconceptions
about its shape. It is optimal in the sense that it is the
best smooth surface. We retain Ib(x) from the procedure
as our estimated background and we can use the
converged values of the peaks, Ip(x), in order to estimate
the parameters of the peaks in reciprocal space as
discussed above. The standard error of the background
can be estimated in the following way. We can determine
the variance of the noise in the background region, Vb,
by calculating the mean deviation of the actual values of
Ic(x) in that region from the smoothed background,
Ib(x). The estimated value of the variance should not be
signi®cantly different from that obtained during the

calibration of the detector. (This can be used to check
the consistency of the procedure and as a check of the
health of the experiment.) If the average bandwidth of
Ib(�) is 1=� pixels, the standard error of the estimation
of the background is Vb=�

2. The background intensity
distribution should be analyzed for the penumbra of the
beam stop and Bragg re¯ection intensities affected by it
should be corrected.

As a ®nal note, we would like to point out some
additional needs and possibilities. We proposed ®nding
the background and the shapes of the re¯ections using
pixel coordinates. This is surely the easiest system to use
for computations. Eventually, we have to transform out
the distortions of the detector using our calibration. We
expect very little distortion when image plates or silicon
diode arrays are used but in optical-®ber-coupled CCD
arrays the distortion can be considerable. In the latter
case, if needed, the transformation to undistorted
coordinates can be performed before ®nding the shapes
of the background and the Bragg spots. By using
methods of wavelet expansion or fast Fourier transforms
of non-equispaced data, the proposed procedure can be
carried out to the needed precision in negligible
computer time even after the transformation to undis-
torted coordinates. We did not specify the optimum
algorithm for ®nding the shapes of the Bragg re¯ections
in reciprocal-space either. The procedures are not very
different from those practiced in existing data-proces-
sing programs. We stressed the need for a consistent
parametrization of the re¯ection shapes. In x3.2, we
assumed a Gaussian shape of the re¯ections in reci-
procal space and a Gaussian distribution of its width and
of its predicted center. The central point is that not only
the best parametrization but also its distribution can be
found from experiment.

The purpose of the above paragraphs was to outline
one data-processing procedure that is consistent with
modern statistical practice. We are aware of many good
data-processing programs that do some parts of the
procedure very well and we do not claim that this is the
only method available.

APPENDIX B

Some basic statistical notation

We use the standard axiomatic de®nition of prob-
abilities, as appear e.g. in Goodman (1985) or Papoulis
(1991). The probability of an event A will be denoted
by P(A). The probability distribution function,
FA�Ao� � P�A � Ao�, expresses the probability that the
random variable A has a value � Ao. FA(Ao) has to be
non-decreasing and it has to have the limits 0 for Ao!
ÿ1 and 1 for Ao ! 1. If the probability distribution
function has a ®nite derivative, the probability density
p(Ao) can be identi®ed with the probability of A being
between A and A� dA, by using the formula
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dFA�Ao� � P�Ao � A � Ao � dA� � p�Ao�dA. Other-
wise, p(A) has to be de®ned in terms of distributions,
meaning that it may also have Dirac-delta-function
components. In that case, all integrations below are
Lebesgue integrals. The normalization,

R
p�A� dA � 1

follows from the de®nition of p(A). The joint probability
density of two events A and B will be denoted by
p�A;B�. It satis®es

R
p�A;B� dA dB � 1. The condi-

tional probability density, A if B, is denoted by p�AjB�.
The two composition laws needed are

p�A;B� � p�AjB�p�B� � p�BjA�p�A� �66�
p�A� � R p�A;B� dB � R p�AjB�p�B� dB: �67�

Equation (67) de®nes what is called marginal prob-
ability. From the second equality in equation (66), one
can deduce Bayes's rule,

p�AjB� � p�BjA�p�A�=p�B�: �68�
If A and B are legitimate random events, there is no
dif®culty in interpreting Bayes's rule. In our use, we will
have to be more cautious with the interpretation of
Bayes's rule because we apply it to cases where A refers
to the likelihood of a hypothesis that a variable has the
value A.² The most satisfactory interpretation the
author knows is that p�AjB� describes the odds for
betting on the outcome of a hypothetical experiment on
A if the value B has already been measured. Note that
the value of A is given by nature and it does not
necessarily have a probability distribution.

The expected value of a function of the random
variable is its integral over its probability distribution

E�g�A�� � R g�A�p�A� dA: �69�

APPENDIX C

C1. The Wilson distribution

For completeness, we list the formulas for the simplest
statistical distribution, called the Wilson distribution, of
the magnitudes of the structure factors in large mole-
cules. For our purposes, we need only prior distributions:
those correspond to the atoms being randomly distrib-
uted in the asymmetric unit. Those were called ®xed-
index distributions by Shmueli & Wilson (1992). More
detailed and elaborate distributions are found in
Giacovazzo (1992), French & Wilson (1978), Sivia &
David (1994), Castlenden & Fortier (1994, and refer-
ences therein), Shmueli & Weiss (1994, and references
therein) and Bricogne (1997). Although the Wilson
distribution is usually given in terms of jFj, we will need
it also in terms of NR � jFj2. Using the basic de®nition
of the probability density in Appendix B,

dP � p�jF�h�j� djF�h�j � p�NR� dNR: �70�

The speci®c Wilson distributions for centric and acentric
re¯ections are

dPc � �2=����1=2� exp�ÿjF�h�j2=2�� djF�h�j
� �1=�2��NR�1=2� exp�ÿNR=2�� dNR;

0 � NR;� �centric� �71c�
dPa � �2jF�h�j=�� exp�ÿjF�h�j2=�� djF�h�j
� �1=�� exp�ÿNR=�� dNR;

0 � NR;� �acentric�: �71a�

If the average magnitudes of the structure factors within
a resolution shell are put onto an absolute scale,
hjF�h�j2i is well approximated at high resolution (> 3 AÊ )
by

� � hjF�h�j2i � exp�ÿB�jF Thj�2=4�P
n

f 2
n ; �72�

where f 2
n are the squares of the scattering factors of the

atoms in the molecule and B characterizes the average
thermal motion of the atoms. Note that � depends on
the resolution shell, 1=d2 � jF Thj2, and it can be esti-
mated from the number and kind of atoms and their
average thermal motion. At low resolution, where the
solvent contributes signi®cantly, there are large devia-
tions from (72). Nevertheless, within each resolution
shell, we will assume a Wilson distribution of the
structure-factor amplitudes and use the actual average
intensity within that shell, hNavei, in the relevant
formula. The latter has to be estimated from the
measured re¯ections themselves. Such an estimation
may have to be performed iteratively. French & Wilson
(1978) investigated the validity of this assumption and
found it to be satis®ed. They have also discussed a
successive approximation procedure to ®nd the values of
hNavei in each resolution shell. Recently, Bricogne
(1997) has examined the applicability of the above
assumptions.

C2. Calculation of the integrals in x3
We will compute the conditional probabilities,

p�NjNB�, for centric and acentric re¯ections. From the
combination rule (67),

p�NjNB� �
R1
0

p�NjNR;NB�p�NR� dNR: �73�

For p�NR�, we use the Wilson distribution, (71c) and
(71a), respectively, and, for p�NjNR;NB�, we use the
Poisson distribution (8). The formulas are² We do not use the likelihood function ��AjB� � p�BjA� explicitly.
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pc�NjNB� �
R1
0

dNR ��NR � NB�N=N!� exp�ÿ�NR � NB��

� �1=�2�hNaveiNR�1=2� exp�ÿNR=2hNavei�
�centric� �74c�

pa�NjNB� �
R1
0

dNR ��NR � NB�N=N!� exp�ÿ�NR � NB��

� �1=hNavei� exp�ÿNR=hNavei�
�acentric�: �74a�

The integrals can be performed analytically for integer
N, by using the binomial expansion for �NR � NB�N
(Kittel & Kroemer, 1980), then using formulas 3.351-3
and 3.371 from Gradshteyn & Rizhik (1980). The results
are, using � � 1� 1=�2hNavei�,
pc�NjNB� � �exp�ÿNB�=�2hNavei�1=2�N�1=2�

�PN
n�0

��2nÿ 1�!!=�2n�!!����NB�Nÿn=�N ÿ n�!�

' ��2hNavei�N=�1� 2hNavei�N�1=2�
� exp�NB=2hNavei�; �75c�

where �2nÿ 1�!! � 1� 3� . . .� �2nÿ 1� and, using
� � 1� 1=hNavei, we get

pa�NjNB� � �exp�ÿNB�=hNavei�N�1�PN
n�0

��NB�k=k!

' ��hNavei�N=�1� hNavei�N�1� exp�NB=hNavei�:
�75a�

In the pro®le-®tting case, the integrals can also be
performed by a close analogy to the previous ones. The
results are

pc�fN�i�g
��fNB�i�g�

' Qk
i�1

��2hNavei�N�i�=�1� 2hNavei�N�i��1=2�

� exp�NB�i�=2hNavei�; �76c�
pa�fN�i�g

��fNB�i�g�

' Qk
i�1

��hNavei�N�i�=�1� hNavei�N�i��1�

� exp�NB�i�=hNavei�: �76a�

C3. Calculation of the integrals in x6
For completeness, in this Appendix we present the

detailed calculation of the integrals in (48), (47).
Although similar calculations have been presented
many times (Goodman, 1985; Srinivasan & Ramachan-
dran, 1965), the calculations are somewhat subtle. We
will use the intermediary of the probability distribution
function. Let us de®ne

P�jFj � Foj
��R; jOj� � R2�

0

P�jFj � jFoj
��R; jOj; '�p�'� d':

�77�
The structure factor of the whole molecule is the sum of
that for the known part and the unknown part,
F � R�O, where all three are complex quantities. For
their magnitudes, the cosine theorem of trigonometry
gives

jFj2 � jRj2 � jOj2 � 2jRjjOj cos '; �78�
where ' is the angle between R and O. (It is the external
angle of the ROF triangle.) We can deduce that
jFj � jFoj if jRj2 � jOj2 � 2jRjjOj cos ' � jFoj2, or

cos ' � �jFoj2 ÿ jRj2 ÿ jOj2�=2jRjjOj: �79�
From jcos 'j � 1, it follows that �jRj ÿ jOj�2 �
jFoj2 � �jRj � jOj�2. Thus, we can de®ne the raw prob-
ability,

P�jFj � jFoj
��R; jOj; '�

� 0; jFoj2 < jRj2 � jOj2 � 2jRjjOj cos '

1; jFoj2 � jRj2 � jOj2 � 2jRjjOj cos ':

(
�80�

At this point, we have to carry out the calculation
separately for acentric and centric re¯ections.

Let us start with the acentric re¯ections. We will
assume that the relative phases of R and O are distrib-
uted uniformly, p�'� � 1=2�. The integral in (77) can be
carried out, the result is

P�jFj � jFoj
��R; jOj�

�

0; jFoj2 < �jRj ÿ jOj�2
1ÿ �1=�� cosÿ1f�jFoj2 ÿ jRj2 ÿ jOj2�=2jRjjOjg;
�jRj ÿ jOj�2 � jFoj2 < �jRj � jOj�2

1; �jRj � jOj�2 � jFoj2:

8>>><>>>:
�81�

From the fundamental de®nition of the probability
density,

p�jFj��R; jOj� � @P�jFj � Foj
��R; jOj�=@jFoj

at jFoj � jFj; �82�
We will use d�cosÿ1 x�=dx � ÿ�1ÿ x2�ÿ1=2. Also, from
(78), cos ' � �jFj2 ÿ jRj2 ÿ jOj2�=2jRjjOj, therefore
d cos '=djFj � jFj=jRjjOj. Finally, after some algebra,

p�jFj��R; jOj� � ÿ�2jFj=��f�jFj2 ÿ �jRj ÿ jOj�2�
� ��jRj � jOj�2 ÿ jFj2�gÿ1=2: �83�

The denominator of (49) is the integral of (83) over jOj.
The inequality constraints (45) provide the limits of the
integral. Thus, the ®nal formula for (49), under the
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assumptions of Wilson statistics and uniform phase
distribution of the relative angle of R and O, is

p�jOj��jFj;R�
� f�jFj2 ÿ �jRj ÿ jOj�2���jRj � jOj�2 ÿ jFj2�gÿ1=2

� pa�jOj�
 RjFj�jRj
jjFjÿjRjj

f�jFj2 ÿ �jRj ÿ jOj�2�

� ��jRj � jOj�2 ÿ jFj2�gÿ1=2pa�jOj� djOj
!ÿ1

:

�84�
In this expression, we have to substitute from (41) and
(42):

pa�jOj� � �2jOj=�� exp�ÿjOj2=��; �41�
where

� �P
n

f 2
n : �42�

In order to carry out the integral in the denominator, we
used the formula (9.6.18) in Abramowitz & Stegun
(1972) for the integral representation of the modi®ed
Bessel function,

Io�z� � �1=��
R1
ÿ1

�1ÿ t2�ÿ1=2 exp�ÿzt� dt: �85�

When the substitution t � �jOj2 ÿ jRj2 ÿ jFj2�=2jRjjFj
is made, after some algebra, equation (50a) is obtained.

The calculation for the centric re¯ection is carried out
next. The basic relations (77), (79) and (80) are valid for
centric re¯ections too. The angles ' are restricted to
0 and 180�. This makes the probability density
p�'� � 1=2���'ÿ 0� � ��'ÿ ��� . The integral in (77)
can be carried out again, the result is

P�jFj � jFoj
��R; jOj�

�
0; jFoj2 < �jRj ÿ jOj�2
1=2; �jRj ÿ jOj�2 � jFoj2 < �jRj � jOj�2
1; �jRj � jOj�2 � jFoj2:

8><>:
�86�

The probability density, from (82), is a distribution, it is

p�jFj��R; jOj� � 1=2���jFj ÿ jjRj ÿ jOjj�
� ��jFj ÿ jjRj � jOjj��: �87�

The integral in the denominator of (49) can be carried
out explicitly for the probability density from (40):

pc�jOj� � �2=���1=2 exp�ÿjOj2=2��; �40�
giving the result

p�jOj��jFj;R� � f���jFj ÿ jjRj ÿ jOjj�
� ��jFj ÿ jjRj � jOjj�� exp�ÿjOj2=2��g
�fexp�ÿ�jRj ÿ jOj�2=2��
� exp�ÿ�jRj � jOj�2=2��gÿ1: �88�

The variables can be changed in this expression, giving

p�jOj��jFj;R� � ��jOj ÿ jjRj ÿ jFjj�
� exp�ÿ�jRj ÿ jFj�2=2��
� fexp�ÿ�jRj ÿ jFj�2=2��
� exp�ÿ�jRj � jFj�2=2��gÿ1

� f��jOj ÿ jjRj � jFjj�
� exp�ÿ�jRj � jFj�2=2��g
� fexp�ÿ�jRj ÿ jFj�2=2��
� exp�ÿ�jRj � jFj�2=2��gÿ1: �89�

APPENDIX D

Inverse r2 weighted cost function with MIR/MAD

In this Appendix, we expand the formulas in x4 to
include MIR/MAD. We start from equation (30) of
paper V:

feden � 1
2

PM
m�0

�m

P
h

w0m�h�2�jRm�h� �Om�h�j ÿ jF 0m�h�j�2;
�90�

which is the obvious generalization of (5). For a Gaus-
sian distribution of the true intensities, the general-
ization of (33) is

h fedeni � 1
2

PM
m�0

�m

P
h

w0m�h�2f�jR0m�h� �Om�h�j

ÿ jF 0m�h�j�2 � �m�h�2g: �91�
Dividing each term by �m�h�2 and normalizing the sum
to be independent of the absolute value of the errors
gives, as in (34),

h fedeni � 1
2 �1=N�

PM
m�0

�m

P
h

�w0m�h�2=�m�h�2�

� �jR0m�h� �Om�h�j ÿ jF 0m�h�j�2; �92�
where N is the average weight in the unit cell,

N � PM
m�0

�m

P
h

�w0m�h�2=�m�h�2�
.� PM

m�0

�mNm

�
; �93�

and where Nm is the number of measured structure
factors in each derivative. The discrepancy principle also
determines a stopping criterion for the solver: the
average value of �jR0m�h� �Om�h�j ÿ jF 0m�h�j�2 should be
�m�h�2. This translates to
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h fedenimin � 1
2 �1=N �

PM
m�0

�m

P
h

w0m�h�2: �94�
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